
CS 61B Scope, Pass-by-Value, Static
Fall 2020 Discussion 2: August 31, 2020

1 Pass-by-What?
1 public class Pokemon {

2 public String name;

3 public int level;

4

5 public Pokemon(String name, int level) {

6 this.name = name;

7 this.level = level;

8 }

9

10 public static void main(String[] args) {

11 Pokemon p = new Pokemon("Pikachu", 17);

12 int level = 100;

13 change(p, level);

14 System.out.println("Name: " + p.name + ", Level: " + p.level);

15 }

16

17 public static void change(Pokemon poke, int level) {

18 poke.level = level;

19 level = 50;

20 poke = new Pokemon("Gengar", 1);

21 }

22 }

(a) Draw the box-and-pointer diagram after Java evaluates the main method.

What would Java print?

Name: Pikachu, Level: 100

For a step by step walkthrough of this box and pointer diagram, see https:

//tinyurl.com/yyknozdd

(b) On line 19, we set level equal to 50. What level do we mean? An instance

variable of the Pokemon class? The local variable containing the parameter to

the change method? The local variable in the main method? Something else?

It is the local variable in the change method and does not have any effect on

the other variables of the same name in the Pokemon class or the main method.

https://tinyurl.com/yyknozdd
https://tinyurl.com/yyknozdd


2 Scope, Pass-by-Value, Static

2 Static Methods and Variables
1 public class Cat {

2 public String name;

3 public static String noise;

4

5 public Cat(String name, String noise) {

6 this.name = name;

7 this.noise = noise;

8 }

9

10 public void play() {

11 System.out.println(noise + " I'm " + name + " the cat!");

12 }

13

14 public void nickname(String newName) {

15 name = newName;

16 }

17

18 public static void anger() {

19 noise = noise.toUpperCase();

20 }

21

22 public static void calm() {

23 noise = noise.toLowerCase();

24 }

25 }

(a) Write what will happen after each call of play() in the following method.

1 public static void main(String[] args) {

2 Cat a = new Cat("Cream", "Meow!");

3 Cat b = new Cat("Tubbs", "Nyan!");

4 a.play();

5 b.play();

6 Cat.anger();

7 a.calm();

8 a.play();

9 b.play();

10 a.nickname("Kitty");

11 a.play();

12 b.play()

13 }

Nyan! I'm Cream the cat!

Nyan! I'm Tubbs the cat!

nyan! I'm Cream the cat!

nyan! I'm Tubbs the cat!

nyan! I'm Kitty the cat!



Scope, Pass-by-Value, Static 3

nyan! I'm Tubbs the cat!

Explanation: Notice that the variable noise was declared to be a static vari-

able. What this means is that there is only one noise variable for the entire

Cat class. In contrast, every time a Cat object is created, it gets its own name.

Another common use of static variables is for storing the total number of

objects that have been created of a class. There needs to be only one variable

per class for storing something like this!

Since there is only noise variable, it first gets set to Meow! in line 2. Then it

changes to Nyan! in line 3 and Meow! is forgotten forever.

Line 6 changes our noise from Nyan! to NYAN!. Then, Line 7 eventually changes

our one and only noise to nyan!.

Line 10 looks at an instance method of the Cat class. When we call nickname

on a, it changes a’s name to Kitty, but b’s name should stay the same.

(b) If we were to add Cat.nickname("KitKat") to the end of our main function,

what would happen?

If we were to add this line to our main function, it would error. In the class,

nickname is an instance function. What would it mean to rename Cat as

opposed to a specific cat? It doesn’t really make sense. So when we try to run

this function on our class, it errors.

One more thing to note is the functions anger and calm are declared static

themselves. Static methods can be called using the name of the class, as in

line 7, whereas non-static methods cannot. The golden rule for static methods

to know is that static methods can only modify static variables.



4 Scope, Pass-by-Value, Static

3 Practice with Linked Lists
Draw the box-and-pointer diagram that results from running the following code. A

StringList is similar to an IntList. It has two instance variables, first and rest.

1 StringList L = new StringList("eat", null);

2 L = new StringList("shouldn't", L);

3 L = new StringList("you", L);

4 L = new StringList("sometimes", L);

5 StringList M = L.rest;

6 StringList R = new StringList("many", null);

7 R = new StringList("potatoes", R);

8 R.rest.rest = R;

9 M.rest.rest.rest = R.rest;

10 L.rest.rest = L.rest.rest.rest;

11 L = M.rest;

For a step by step walkthrough of this box and pointer diagram, see https://

tinyurl.com/y38jkzpj

https://tinyurl.com/y38jkzpj
https://tinyurl.com/y38jkzpj


Scope, Pass-by-Value, Static 5

4 Squaring a List Extra

Implement square and squareDestructive which are static methods that both

take in an IntList L and return an IntList with its integer values all squared.

square does this non-destructively with recursion by creating new IntLists while

squareDestructive uses an iterative approach to change the instance variables of

the input IntList L.

public static IntList square(IntList L) {

if (L == null) {

return L;

} else {

IntList rest = square(L.rest);

IntList M = new IntList(L.first * L.first, rest);

return M;

}

}

Explanation: This is a recursive function relying on the famous recursive leap of

faith. Lines 1-2 take care of the base case. Line 4 takes the recursive leap of faith.

It assumes that the square function correctly squares the rest of the linked list.

Line 5 then uses the correct result from line 4 to create a new IntList with the

first element squared.

public static IntList squareDestructive(IntList L) {

IntList B = L;

while (B != null) {

B.first *= B.first;

B = B.rest

}

return L;

}

Explanation: This method walks through the linked list, one part at a time, and

squares each element in place. B is used as a position variable to keep track of where

we are in the linked list. Once B becomes null, we have hit the end of the linked

list.

Extra: Now, implement square iteratively, and squareDestructive recursively.

public static IntList square(IntList L) {

if (L == null) {

return L;

}

IntList B = L.rest;

IntList LSquared = new IntList(L.first * L.first, null);

IntList C = LSquared;

while (B != null) {

C.rest = new IntList(B.first * B.first, null);

B = B.rest;

C = C.rest;



6 Scope, Pass-by-Value, Static

}

return LSquared;

}

public static IntList squareDestructive(IntList L) {

if (L == null) {

return L;

} else {

L.first = L.first * L.first;

squareDestructive(L.rest);

}

return L;

}


	Pass-by-What?
	Static Methods and Variables
	Practice with Linked Lists
	Squaring a List Extra

