
CS 61B Traversals, Tries, Heaps
Fall 2020 Discussion 9: October 19, 2020

1 Tree Traversals
10

3

1 7

12

11 14

13 15

Write the pre-order, in-order, post-order, and level-order traversals of the above

binary search tree.

Pre-order: 10 3 1 7 12 11 14 13 15

In-order: 1 3 7 10 11 12 13 14 15

Post-order: 1 7 3 11 13 15 14 12 10

Level-order (BFS): 10 3 12 1 7 11 14 13 15

2 Tries
What strings are stored in the trie below? Now insert the strings indent, inches,

and trie into the trie. Extra: How could you modify a trie so that you can efficiently

determine the number of words with a specific prefix in the trie?

I

N

D

E

X

H O

FC

The strings originally contained in the trie are inch, index, and info.

The trie after inserting indent, inches, and trie.



2 Traversals, Tries, Heaps

I

N

D

E

X

H O

FC

N

TS

E

T

R

E

I

Extra:

We can add a numWordsBelow variable to each of the nodes in our trie. When we

insert we will increment this variable for all nodes on the path to insertion. When

we delete, we decrement this variable for all nodes on the path to the word. In order

to determine the number of words that start with a specific prefix, we can traverse

the trie following the letters in the prefix. Once we reach the end of the prefix, we

return numWordsBelow of the last character in the prefix, or 0 if the entrie prefix is

not contained in the tree. If the length of the prefix is k then this code will run in

Θ(k) in the worst case. If we assume the lengths of the strings are constant, then

this runtime of Θ(k) will actually be Θ(1) as we drop the constant coefficients.

3 Heaps of Fun
(a) Assume that we have a binary min-heap (smallest value on top) data structure

called Heap that stores integers, and has properly implemented the insert and

removeMin methods. Draw the heap and its corresponding array representation

after each of the operations below:

1 MinHeap<Character> h = new MinHeap<>();

2 h.insert('f');

3 h.insert('h');

4 h.insert('d');

5 h.insert('b');

6 h.insert('c');

7 h.removeMin();

8 h.removeMin();

f

f

h



Traversals, Tries, Heaps 3

d

h f

b

d

h

f

b

c

h d

f

c

d

h

f

d

h f

(b) Your friendly TA Anjali challenges you to quickly implement an integer max-

heap data structure. However, you already have written a min-heap and you

don’t feel like writing a whole second data structure. Can you use your min-

heap to mimic the behavior of a max-heap?

Hint : Although you cannot alter them, you can still use methods from MinHeap.

Yes. For every insert operation, negate the number and add it to the min-heap.

For a removeMax operation call removeMin on the min-heap and negate the

number returned. Any number negated twice is itself (with one exception in

Java, −2−31), and since we store the negation of numbers, the order is now

reversed (what used to be the max is now the min).


	Tree Traversals
	Tries
	Heaps of Fun

