
CS 61B Heaps and Tries
Fall 2020 Exam Prep Discussion 9: October 19, 2020

1 Fill in the Blanks
Fill in the following blanks related to min-heaps:

1. removeMin has a best case runtime of and a worst case

runtime of .

2. insert has a best case runtime of and a worst case run-

time of .

3. A or traversal on a min-heap can out-

put the elements in sorted order.

4. The fourth smallest element in a min-heap with 1000 distinct elements can

appear in places in the heap.

5. Given a min-heap with 2n − 1 distinct elements, for an element

• to be on the second level it must be less than ele-

ment(s) and greater than element(s).

• to be on the bottommost level it must be less than

element(s) and greater than element(s).

Solution:

1. removeMin has a best case runtime of Θ(1) and a worst case runtime of

Θ(logN).

2. insert has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

3. A pre order or level order traversal on a min-heap can output the elements in

sorted order.

4. The fourth smallest element in a min-heap with 1000 distinct elements can

appear in 14 places in the heap. (it can be on the second, third, or fourth

levels)

5. Given a min-heap with 2n − 1 distinct elements, for an element -

• to be on the second level it must be less than 2(n−1) − 2 element(s) and

greater than 1 element(s). (must be greater than the topmost and less

than the elements in its subtree)

• to be on the bottommost level it must be less than 0 element(s) and

greater than n-1 element(s). (must be greater than the elements on its

branch)



2 Heaps and Tries

2 Heap Mystery
We are given the following array representing a min-heap where each letter repre-

sents a unique number. Assume the root of the min-heap is at index zero, i.e. A is

the root.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is

either a removeMin or an insert. The resulting state of the min-heap is shown

below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first op-

eration has already been filled in for you!

1. removeMin()

2.

3.

4.

Solution:

1. removeMin()

2. insert(X)

3. removeMin()

4. insert(A)

Explanation: We know immediately that A was removed. Then, after looking

at the final state of the min-heap, we see that C was removed. Then, for A

to remain in the min-heap, we see that A must have been inserted afterwards.

And, after seeing a new value X in the min-heap, we see that X must have

been inserted as well. We just need to determine the relative ordering of the

insert(X) in between the operations removeMin() and insert(A), and we see

that the insert(X) must go before both.

(b) Fill in the following comparisons with either >, <, or ? if unknown. Note

that this question does not assume a specific ordering of operations from the

previous part, i.e. we don’t know which of the two possible

1. X D

2. X C

3. B C

4. G X

Solution:

1. X ? D



Heaps and Tries 3

2. X > C

3. B > C

4. G < X

Reasoning:

1. X is never compared to D

2. X must be greater than C since C is removed after X’s insertion.

3. B must also be greater than C otherwise the second call to removeMin would

have removed B

4. X must be greater than G so that it can be ”promoted” to the top after the

removal of C. It needs to be promoted to the top to land in its new position.



4 Heaps and Tries

3 A Wordsearch
Given an N by N wordsearch and N words, devise an algorithm to solve the word-

search in O(N3). Each word is at most N letters. For simplicity, no word is

contained within another, i.e. if the word ”bear” existed, ”be” could not exist as

well. See below for an example wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation

helpful. Recall that longestPrefixOf accepts a String key and returns the longest

prefix of the given string that exists in the Trie, or null if no prefix exists.

Algorithm: Begin by adding all the words we are querying for into a Trie. Next,

we will iterate through each letter in the wordsearch and see if any words start with

the given letter. For a word to start with a given letter, note that it can go in one

of eight directions — N, NE, E, SE, S, SW, W, NW.

Looking at each direction, we will check if the string going in that direction has a

prefix that exists in our Trie, which we can do using longestPrefixOf. Note that

words are not nested inside of others, so at most one word can start from a given

letter in a given direction. As such, if longestPrefixOf returns a word, we know it

is the only word that goes in that direction from that letter.

For instance, if we are at the letter ”H” in the top left corner of the wordsearch

above and are considering the direction ”SE”, we would want to see if the string "

HENRYHA" has a prefix that exists in the given wordsearch. To efficiently perform this

query, we call longestPrefixOf("HENRYHA"), which, in this case, returns "HENRY",

and we proceed by removing "HENRY" from our Trie to signal that we found the

word "HENRY".

We will repeat this process until the all the words have been found, i.e. when the

Trie is empty. Finally, note that this is a very open ended problem, so this is one

of many possible solutions.

Runtime: We look at N2 letters; at each letter, we execute eight calls to longestPrefixOf

which runs in time linear to the length of the inputted string, which can be of at

https://algs4.cs.princeton.edu/52trie/TrieST.java.html


Heaps and Tries 5

most length N . Thus, if we perform N work per letter and we look at N2 letters,

the runtime is O(N3).


	Fill in the Blanks
	Heap Mystery
	A Wordsearch

