
CS 61B DFS, BFS, Shortest Paths
Fall 2020 Exam Prep Discussion 10: October 26, 2020

1 DFS, BFS, Dijkstra’s, A*
For the following questions, use the graph below and assume that we break ties by

visiting lexicographically earlier nodes first.

(a) Give the depth first search preorder traversal starting from vertex A.

A, B, C, F, D, G, H, E

(b) Give the depth first search postorder traversal starting from vertex A.

H, G, D, E, F, C, B, A

(c) Give the breadth first search traversal starting from vertex A.

A, B, E, C, F, D, G, H

(d) Give the order in which Dijkstra’s Algorithm would visit each vertex, starting

from vertex A. Sketch the resulting shortest paths tree.

A, B, C, E, F, D, G, H

(e) Give the path A* search would return, starting from A and with G as a goal.

Let h(u, v) be the valued returned by the heuristic for nodes u and v.

2 DFS, BFS, Shortest Paths

u v h(u, v)

A G 9

B G 7

C G 4

D G 1

E G 10

F G 3

H G 5

A→ B,B → C,C → F, F → D,D → G

DFS, BFS, Shortest Paths 3

2 Graph Conceptuals
Answer the following questions as either True or False and provide a brief expla-

nation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

False. The graph must be connected.

2. The adjacency matrix representation is typically better than the adjacency

list representation when the graph is very connected.

True. The adjacency matrix representation is usually worse than the adja-

cency list representation with regards to space, scanning a vertex’s neighbors,

and full graph scans. However, when the graph is very connected, the ad-

jacency matrix representation has roughly same asymptotic runtime in these

operations, while “winning” in operations like hasEdge.

3. Every edge is looked at exactly twice in every iteration of DFS on a connected,

undirected graph.

True. The two vertices the edge is connecting will look at that edge when

it’s their turn.

4. In BFS, let d(v) be the minimum number of edges between a vertex v and the

start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always

less than 2.

True. Suppose this wasn’t the case. Then, we could have a vertex 2 edges

away and a vertex 4 edges away in the fringe at the same time. But, the only

way to have a vertex 4 edges away is if a vertex 3 edges away was removed

from the fringe. We see this could never occur because the vertex 2 edges

away would be removed before the vertex 3 edges away!

5. Given a fully connected, directed graph (a directed edge exists between every

pair of vertices), a topological sort can never exist.

False. Consider the graph constructed as follows: for all vertices i, j such

that i < j, draw a directed edge from i to j. A valid topological ordering of

this graph is simply enumerating the vertices: 1, 2, 3,N .

4 DFS, BFS, Shortest Paths

3 Cycle Detection
Given an undirected graph, provide an algorithm that returns true if a cycle exists

in the graph, and false otherwise. Also, provide a Θ bound for the worst case

runtime of your algorithm. You may use either an adjacency list or an adjacency

matrix to represent your graph. (We are looking for an answer in plain English, not

code).

We do a depth first search traversal through the graph. While we recurse, if we

visit a node that we visited already, then we’ve found a cycle. Assuming integer

labels, we can use something like a visited boolean array to keep track of the

elements that we’ve seen, and while looking through a node’s neighbors, if visited

gives true, then that indicates a cycle. Note that this algorithm differs slightly if

the graph is directed. If the graph is directed, then there is a cycle if a node has

already been visited and it is still in the recursive call stack (i.e. still in the fringe

and not popped off yet).

In the worst case, we have to explore V edges to find a cycle (number of edges

doesn’t matter). So, this runs in Θ(V).

	DFS, BFS, Dijkstra's, A*
	Graph Conceptuals
	Cycle Detection

