
CS 61B More Sorting
Fall 2020 Exam Prep Discussion 13: November 16, 2020

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Once we have 100 runs of size N/100, insertion sort will take best case Θ(N)

and worst case Θ(N2) time. The constant number of linear time merging

operations don’t add to the runtime.

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N2), Worst Case: Θ(N2)

The best case and worst case don’t change since swapping at most doubles the

work each iteration, which produces the same asymptotic runtime as normal

selection sort.

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

Doing an extra N work each iteration of quicksort doesn’t asymptotically

change the best case runtime, but it improves the worst case runtime.

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

While a max-heap is better, we can make do with a min-heap by placing

the smallest element at the right end of the list until the list is sorted in

descending order. Once the list is in descending order, it can be sorted in

ascending order with a simple linear time pass.

2 More Sorting

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

Recall that insertion sort takes Θ(N + K) time, where K is the number

of inversions. If K is at most N, then, insertion sort has the best and

worst case runtime of Θ(N). Here is an explanation for why no sorting

algorithm can surpass this. Notice for our algorithm to terminate we

either need to address every inversion or look at every element. Since

there are at most N inversions, knowing that we have addressed every

inversion would take us at least Θ(N) time. Looking at every element in

the list would also take us Θ(N) time. In either case, we see the runtime

of any sorting algorithm cannot be faster than Θ(N).

• There is exactly 1 inversion

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(1), Worst Case: Θ(N)

The inversion may be the first two elements, in which case constant time

is needed. Or, it may involve elements at the end, in which case N time

is needed. It can be proven quite simply that no sorting algorithm can

achieve a better runtime than above for the best and worst case.

• There are exactly (N2 −N)/2 inversions

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

If a list has N(N − 1)/2 inversions, it means it is sorted in descending

order! So, it can be sorted in ascending order with a simple linear time

pass. We know that reversing any array is a linear time operation, so the

optimal runtime of any sorting algorithm is Θ(N).

More Sorting 3

2 Shuffled Exams
For this problem, we will be working with Exam and Student objects, both of which

have only one attribute: sid, which is a number like any student ID.

Gradescope thought it was ready for the midterm. It had meticulously created

two arrays, one of Exams and the other of Students, and ordered both on sid such

that the ith Exam in the Exams array has the same sid as the ith Student in the

Students array. Note the arrays are not necessarily sorted by sid. However, Grade-

scope crashed, and the Students array was shuffled, but the Exams array somehow

remained untouched. Time is precious, so you must design a O(N) time algorithm

to reorder the Students array appropriately without changing the Exams array! For

partial credit, you may reorder both the Students and Exams arrays such that ith

Exam in the Exams array has the same sid as the ith Student in the Students array.

Hint: Use radix sort.

Solution:

Let’s begin by creating an ExamWrapper class that contains two attributes — an

Exam instance and the index of the corresponding Exam in the Exams array. Next,

for each Exam, create the corresponding ExamWrapper instance.

Run radix sort on the ExamWrappers, sorting them on the sid of the Exam instances.

Similarly run radix sort on the list of Students, sorting them on sid as well. Note

that both iterations of radix sort take linear time since the sid is of fixed length

and of base 10.

At this point in the algorithm, we have satisfied the partial credit criteria, but

we still need move the ith Student to its proper place relative to the original Exams

array. To acheive this, for the ith Student, we will access the ith ExamWrapper, and

set the index of the ith Student as the ExamWrapper's index attribute.

.

4 More Sorting

3 Bears and Beds
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.

Solution:

Our solution will modify quicksort. Let’s begin by choosing a pivot from the Bears

list. To avoid quicksort’s worst case behavior on a sorted array, we will choose a

random Bear as the pivot. Next we will partition the Beds into three groups —

those less than, equal to, and greater than the pivot Bear. Next, we will select

a pivot from the Bears list. This is very important — our pivot Bed will be the

Bed that is equal to the pivot Bear. Given that the Beds and Bears have unique

sizes, we know that exactly one Bed will be equal to the pivot Bear. Next we will

partition the Beds into three groups — those less than, equal to, and greater than

the pivot Bed.

Next, we will ”match” the pivot Bear with the pivot Bed by adding them to the

Bears and Beds lists at the same index, which is as easy as just adding to the end.

Finally, in the same fashion as quicksort, we will have two recursive calls. The first

recursive call will contain the Beds and Bears that are less than their respective

pivots. The second recursive call will contain the Beds and Bears that are greater

than their respective pivots.

	Sorted Runtimes
	Shuffled Exams
	Bears and Beds

