
CS 61B Topical Review Session
Fall 2020 Section 1: Pointers, LinkedLists, Arrays MT1 Review

1 Pointers

1. Draw the resulting box and pointer diagrams for the following lines of code. The head of an IntList is
its value, and the tail is a pointer to the next node in the list.

IntList L1 = IntList.list(1, 2, 3);

IntList L2 = IntList.list(4, 5);

L1.tail.head = 3;

L2.tail = L1.tail.tail;

L2.tail.tail = L1.tail;

Solution:

2. Draw the resulting box and pointer diagrams for the following lines of code.

IntList L1 = IntList.list(7,15,22,31);

IntList L2 = L1.tail.tail;

L2.tail.head = 13;

L1.tail.tail.tail = L2;

IntList L3 = IntList.list(50);

L2.tail.tail = L3;

Solution:

CS 61B, Fall 2020, MT1 Review 1



3. What would the output of the following lines of code be? Be sure to draw a box-and-pointer diagram!

public static void main(String[] args) {
IntList L1 = IntList.list(8, 3, 6, 4);

IntList L2 = IntList.list(4, 5, 9, 0);

IntList L3 = L2;

int x = 4;

mystery(L1, L3, x);

System.out.println(L1);

System.out.println(L2);

System.out.println(x);

}

public static void mystery(IntList L1, IntList L2, int x) {
L1.head = 23;

L2.tail.tail = L1.tail;

L1.tail.tail.head = L2.tail.head;

x += 16;

L2 = IntList.list(1, 2);

}
Solution:

[23, 3, 5, 4]
[4, 5, 3, 5, 4]
4

4. Let’s say a method has the following signature: ”public int foo(int x)”. What is stored in the variable
x?
The value 4 is stored in x, since x is of primitive int type.

CS 61B, Fall 2020, MT1 Review 2



5. Similarly, let’s say some other method has the following signature: ”public boolean boo(IntList y)”.
What is stored in the variable y? What happens if we change the value of y in boo?
Since y is of type IntList (an object), it stores a pointer to an IntList (in other words, it stores the
address where the IntList is located in memory). When this pointer is changed in boo, the original
IntList that y pointed to will remain unchanged.

CS 61B, Fall 2020, MT1 Review 3



2 Arrays

Describe what each of the following methods do. You may assume that values contains at least one
element.

private static boolean method1 (int[] values) {
int k = 0;
while (k < values.length - 1) {

if (values[k] > values[k+1]) {
return false;

}
k = k + 1;

}
return true;

}

Solution: method1 returns true if values is non-decreasing, i.e. if each value in values is
larger than or equal to the previous element.

private static void method2 (int[] values) {
int k = 0;
while (k < values.length / 2) {

int temp = values[k];
values[k] = values[values.length - 1 - k];
values[values.length - 1 - k] = temp;
k = k + 1;

}
}

Solution: method2 reverses values in place. Note that method2 has no return value and instead
mutates values.

CS 61B, Fall 2020, MT1 Review 4



3 Linked Lists

7. Consider the following:

public class Point {
public int x;
public int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

public class PointList {

private class Stuff {

Point item;
Stuff next;
Stuff prev;

Stuff(Point item, Stuff next, Stuff prev) {
this.item = item;
this.next = next;
this.prev = prev;
}

}

public int size;
private final Stuff sentinel;

public PointList() {
// implementation omitted
}

public void addMiddle(Point p) {

// your answer here

}
}

CS 61B, Fall 2020, MT1 Review 5



The method addMiddle(Point p) is supposed to add some Point p to the middle of this instance
of PointList. Assuming that the size of the list is greater than 1, write the code that would properly
implement addMiddle(Point p).

Answer:

Stuff midStuff = this.sentinel;
for (int i = 0; i < this.size / 2; i += 1) {

midStuff = this.sentinel.next;
}

Stuff newStuff = new Stuff(p, midStuff.next, midStuff)
midStuff.next.prev = newStuff;
midStuff.next = newStuff;
this.size += 1;

CS 61B, Fall 2020, MT1 Review 6


	Pointers
	Arrays
	Linked Lists

