
Map, Set, List Reference Sheet, Page 1

public interface Map<K, V> ... { ...
 public boolean containsKey(K key)
 public V get(K key)
 public V getOrDefault(K key, V value)
 public void put(K key, V value)
 public Set<K> keySet()
 public Iterator<K> iterator()
 public int size()
}

public interface Set<K> ... { ...
 public boolean contains(K key)
 public void add(K key)
 public Set<K> keySet()
 public Iterator<K> iterator()
 public int size()
}

public interface List<T> ... { ...
 public boolean contains(T item)
 public void add(T item)
 public void add(int index, T item)
 public T get(int i)
 public T set(int i, T item)
 public int indexOf(Object o)
 public boolean remove(Object o)
 public Iterator<T> iterator()
 public int size()
}

Implementations:

Other handy data types:

public class Stack<T> ... { ...
 public T pop()
 public void push(T item)
 public Iterator<T> iterator()
 public int size()
}

public class Queue<T> ... { ...
 public T dequeue()
 public void enqueue(T item)
 public Iterator<T> iterator()
 public int size()
}

public class MinPQ<T> ... { ...
 public T MinPQ()
 public T MinPQ(Comparator<T> c)
 public T removeSmallest()
 public T smallest()
 public void add(T item)
 public Iterator<T> iterator()
 public int size()
}

Iterator, Iterable, Comparator, Comparable:

public interface Iterator<T> {
 boolean hasNext();
 T next();
}

public interface Iterable<T> {
 Iterator<T> iterator();
}

public interface Comparator<T> {
 int compare(T o1, T o2);
}

public interface Comparable<T> {
 int compareTo(T obj);
}

Reference Sheet, Page 2

