Map, Set,

List

public interface Map<K, V> ... { .

public
public
public
public
public
public
public
}

boolean containsKey (K key)

V get(K key)

V getOrDefault(K key, V value)
void put(K key, V value)
Set<K> keySet()

Iterator<K> iterator()

int size()

public interface Set<K> ... { .

public

public

public

public

public
}

boolean contains(K key)
void add(K key)

Set<K> keySet()
Iterator<K> iterator()
int size()

public interface List<T> ... { .

public
public
public
public
public
public
public
public
public
}

boolean contains(T 1tem)
void add(T item)

void add(int index, T item)
T get(int i)

T set(int i, T item)

int indexOf(Object o)
boolean remove(Object o)
Iterator<T> iterator()

int size()

Implementations:

Reference Sheet, Page 1

Collection

///v‘ #\

List Set

TN

Linked
List

ArraylList HashSet

TreeSet

HashMap

TreeMap




Other handy data types:

public class Stack<T> ... { ...
public T pop()
public void push(T item)
public Iterator<T> iterator()
public int size()

}

public class Queue<T> ... { ...
public T dequeue()
public void enqueue(T item)
public Iterator<T> iterator()
public int size()

}

public class MinPQ<T> ... { ...
public T MinPQ()
public T MinPQ(Comparator<T> c)
public T removeSmallest()
public T smallest()
public void add(T item)
public Iterator<T> iterator()
public int size()

Iterator, Iterable, Comparator, Comparable:

public interface Iterator<T> {
boolean hasNext();
T next();

}

public interface Iterable<T> {
Iterator<T> iterator();

}

public interface Comparator<T> {
int compare(T ol, T 02);

}

public interface Comparable<T> {
int compareTo(T obj);
}

Reference Sheet, Page 2



