
CS 61B Homework 3
Fall 2020 October 7, 2020

1 Asymptotic Warm Up
Give the tightest asymptotic bound on foo(n).

1 public int foo(int n) {

2 if (n == 0) {

3 return 0;

4 }

5 bloop(n);

6 return foo(n / 3) + foo(n / 3) + foo(n / 3);

7 }

8

9 public int bloop(int n) {

10 for (int i = 0; i < n; i += 1) {

11 System.out.println("Ah, loops too");

12 }

13 return n;

14 }



2 Homework 3

2 Asymptotic Potpourri
Note: This is the hardest problem on this Homework. If you are stuck on it for a

long time, move on to other problems, and post on Ed or come to Office Hours so

we can help you.

For the following methods, give the runtime of in Θ notation. Your answer should be

a function of N that is as simple as possible with no unnecessary leading constants

or lower order terms.

(a) Give the runtime of mystery1(n) in Θ notation.

1 public void mystery1(int n) {

2 for (int i = n; i > 0; i = i / 2) {

3 for (int j = 0; j < 100000000; j += 2) {

4 System.out.println("Hello World");

5 }

6 }

7 }

(b) Give the runtime of mystery2(n) in Θ notation.

1 public void mystery2(int n) {

2 for (int i = 1; i < n; i += 1) {

3 for (int j = 0; j < n; j += 1) {

4 i = i * 2;

5 j = j * 2;

6 }

7 }

8 }

(c) Give the runtime of mystery3(n) in Θ notation.

1 public void mystery3(int n) {

2 for (int i = n; i > 0; i = i / 2) {

3 for (int j = 1; j < i * i; j *= 2) {

4 System.out.println("Hello World");

5 }

6 }

7 }

(d) Give the runtime of mystery4(n) in Θ notation. Assume that the SLList

constructor, and the size and addFirst methods take constant time.

1 public void mystery4(int n) {

2 SLList<Integer> list = new SLList<>();

3 for (int i = 1; list.size() < n; i += 1) {

4 for (int j = 0; j < i; j += 1) {

5 list.addFirst(j);

6 }

7 System.out.print(list.size() + " + ");

8 }

9 }



Homework 3 3

3 WQU
(a) Draw the Weighted Quick Union object on 0 through 10, that results from the

following connect calls. Do not use path compression. What is the resulting

underlying array? Note that if we connect two sets of equal weight, by conven-

tion we make the set whose root has a smaller number the child of the other.

We use the convention that if an element is the root of the set, its array value

is the weight of the set negated.

connect(0, 1);

connect(2, 3);

connect(9, 5);

connect(5, 7);

connect(7, 1);

connect(4, 2);

connect(3, 1);

(b) Assume that a single node has a height of 0. What are the shortest and tallest

heights for a Quick Union object with 16 connected elements? What about for

a Weighted Quick Union object?

(c) What are the best and worst runtimes for connect and isConnected in a Quick

Union object with N connected elements? What about in a Weighted Quick

Union object?



4 Homework 3

4 Switcheroo
(a) Consider the following 2-3 tree. Convert it to an LLRB, and describe the 6

LLRB operations to balance the tree after inserting the number 11. The LLRB

operations are: rotateRight(x), rotateLeft(x), and colorFlip(x).

20

9, 17

3, 5 10, 15 18

24, 40

21, 23 30 50, 51

(b) After inserting 11 and balancing the LLRB, how many red links are on along

the longest path from the root to a leaf.



Homework 3 5

5 Mechanical Hashing
Suppose we insert the following words into an initially empty hash table, in this

order: kerfuffle, broom, hroom, ragamuffin, donkey, brekky, blob, zenz-

izenzizenzic, and yap. Assume that the hash code of a String is just its length

(note that this is not actually the hash code for Strings in Java). Use separate

chaining to resolve collisions. Assume 4 is the initial size of the hash table’s inter-

nal array, and double this array’s size when the load factor is equal to 1. Illustrate

this hash table with a box-and-pointer diagram.

For each index of the final hash table, specify what Strings are stored in it. If it is

empty, write ”none”.


	Asymptotic Warm Up
	Asymptotic Potpourri
	WQU
	Switcheroo
	Mechanical Hashing

