
CS 61B Iterators and Iterables
Fall 2020 Discussion 5: September 21, 2020

1 Iterators Warmup
1. If we were to define a class that implements the interface Iterable<Integer>,

what method(s) would this class need to define? Write the function signa-

ture(s) below.

2. If we were to define a class that implements the interface Iterator<Integer>,

what method(s) would this class need to define? Write the function signa-

ture(s) below.

3. What’s one difference between Iterator and Iterable?

2 Iterators and Iterables

2 OHQueue
The goal for this question is to create an iterable Office Hours queue. We’ll do so

step by step.

The code below for OHRequest represents a single request. Like an IntNode, it has

a reference to the next request. description and name contain the description of

the bug and name of the person on the queue.

1 public class OHRequest {

2 public String description;

3 public String name;

4 public OHRequest next;

5

6 public OHRequest(String description, String name, OHRequest next) {

7 this.description = description;

8 this.name = name;

9 this.next = next;

10 }

11 }

First, let’s define an iterator. Create a class OHIterator that implements an iterator

over OHRequest objects that only returns requests with good descriptions. Our

OHIterator’s constructor will take in an OHRequest object that represents the first

OHRequest object on the queue. We’ve provided a function, isGood, that accepts a

description and says if the description is good or not. If we run out of office hour

requests, we should throw a NoSuchElementException when our iterator tries to get

another request.

import java.util.Iterator;

public class OHIterator __ {

OHRequest curr;

public OHIterator(OHRequest queue) {

}

public boolean isGood(String description) {

return description != null && description.length() > 5;

}

Iterators and Iterables 3

}

Now, define a class OHQueue. We want our OHQueue to be iterable, so that we can

process OHRequest objects with good descriptions. Our constructor will take in an

OHRequest object representing the first request on the queue.

import java.util.Iterator;

public class OHQueue __________________________________ {

public OHQueue (OHRequest queue) {

}

}

Fill in the main method below so that you make a new OHQueue object and print

the names of people with good descriptions. Note : the main method is part of the

OHQueue class.

public class OHQueue ... {

....

public static void main(String [] args) {

OHRequest s5 = new OHRequest("I deleted all of my files", "Alex", null);

OHRequest s4 = new OHRequest("conceptual: what is Java", "Omar", s5);

OHRequest s3 = new OHRequest("git: I never did lab 1", "Connor", s4);

OHRequest s2 = new OHRequest("help", "Hug", s3);

OHRequest s1 = new OHRequest("no I haven't tried stepping through", "Itai", s2);

for (_____________ : ________________) {

}

}

4 Iterators and Iterables

3 Thank u, next
Now that we have our OHQueue from problem 2, we’d like to add some functionality.

We’ve noticed that occasionally in office hours, the system will put someone on

the queue twice. It seems that this happens whenever the description contains the

words “thank u.” To combat this, we’d like to define a new version of our previous

iterator, TYIterator.

If the current item’s description contains the words “thank u,” it should skip the

next item on the queue. As an example, if there were 4 OHRequest objects on the

queue with descriptions ["thank u", "thank u", "im bored", "help me"], calls to

next() should return the 0th, 2nd, and 3rd OHRequest objects on the queue. Note:

we are still enforcing good descriptions on the queue as well!

Hint - To check if a description contains the words “thank u”, you can use:

curr.description.contains("thank u")

public class TYIterator extends ______________________________________ {

public TYIterator(OHRequest queue) {

}

}

	Iterators Warmup
	OHQueue
	Thank u, next

