
CS 61B Disjoint Sets and Asymptotics
Fall 2020 Discussion 6: September 28, 2020

1 Disjoint Sets, a.k.a. Union Find
In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union

Find ADT. Today, we will use union find terminology so that you have seen both.

(a) What are the last two improvements (out of four) that we made to our naive

implementation of the Union Find ADT during lecture 14 (Monday’s lecture)?

1. Improvement 1:

2. Improvement 2:

(b) Assume we have nine items, represented by integers 0 through 8. All items are

initially unconnected to each other. Draw the union find tree, draw its array

representation after the series of connect() and find() operations, and write

down the result of find() operations using WeightedQuickUnion. Break

ties by choosing the smaller integer to be the root.

Note: find(x) returns the root of the tree for item x.

connect(2, 3);

connect(1, 2);

connect(5, 7);

connect(8, 4);

connect(7, 2);

find(3);

connect(0, 6);

connect(6, 4);

connect(6, 3);

find(8);

find(6);

(c) Repeat the above part, using WeightedQuickUnion with Path Compres-

sion.



2 Disjoint Sets and Asymptotics

2 Asymptotics
(a) Order the following big-O runtimes from smallest to largest.

O(log n), O(1), O(nn), O(n3), O(n log n), O(n), O(n!), O(2n), O(n2 log n)

(b) Are the statements in the right column true or false? If false, correct the

asymptotic notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound.

Ω(·) is the opposite of O(·), i.e. f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)).

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

f(n) = n log n

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

g(n) = (log n)2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n))

(c) Give the worst case and best case runtime in terms of M and N . Assume ping

is in Θ(1) and returns an int.

1 int j = 0;

2 for (int i = N; i > 0; i--) {

3 for (; j <= M; j++) {

4 if (ping(i, j) > 64) break;

5 }

6 }

(d) Assume mrpoolsort(array) is in Θ(N logN) and returns array sorted.

1 public static boolean mystery(int[] array) {

2 array = mrpoolsort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean x = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j]) x = true;

8 }

9 if (!x) return false;

10 }

11 return true;

12 }

1. Give the worst case and best case runtime where N = array.length.

What is mystery() doing?



Disjoint Sets and Asymptotics 3

2. Now that you know what mystery() is doing, try to come up with a way

to implement mystery() that runs in Θ(NlogN) time. Can we get any

faster?


	Disjoint Sets, a.k.a. Union Find
	Asymptotics

