Co 61B More Sorting
Faﬂ 2020 Exam Prep Discussion 13: November 16, 2020

1

Sorted Runtimes

We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a)

()

Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: ©(), Worst Case: ©()

We can only swap adjacent elements in selection sort.

Best Case: ©(), Worst Case: O()

We use a linear time median finding algorithm to select the pivot in quicksort.
Best Case: ©(), Worst Case: O()

We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.
Best Case: O(), Worst Case: ©()
We run an optimal sorting algorithm of our choosing knowing:
e There are at most N inversions
Best Case: ©(), Worst Case: O()
e There is exactly 1 inversion
Best Case: O(), Worst Case: ©()
e There are exactly (N? — N)/2 inversions

Best Case: O(), Worst Case: ©()

2 More Sorting

2 Shuffled Exams

For this problem, we will be working with Exam and Student objects, both of which
have only one attribute: sid, which is a number like any student ID.

Gradescope thought it was ready for the midterm. It had meticulously created
two arrays, one of Exams and the other of Students, and ordered both on sid such
that the ith Exam in the Exams array has the same sid as the ith Student in the
Students array. Note the arrays are not necessarily sorted by sid. However, Grade-
scope crashed, and the Students array was shuffled, but the Exams array somehow
remained untouched. Time is precious, so you must design a O(N) time algorithm
to reorder the Students array appropriately without changing the Exams array! For
partial credit, you may reorder both the Students and Exams arrays such that ith
Exam in the Exams array has the same sid as the ith Student in the Students array.

Hint: Use radix sort.

More Sorting 3

3 Bears ancl Beds

The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help
them place their customers in the best possible homes to improve their experience.
They are currently in their alpha stage so their only customers (for now) are bears.
Now, a little known fact about bears is that they are very, very picky about their
bed sizes: they do not like their beds too big or too little - they like them just right.
Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.
The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-
sponding but also unknown sizes (not necessarily in the same order), return a list
of Bears and a list of Beds such that that the ith Bear in your returned list of Bears
is the same size as the ith Bed in your returned list of Beds. Bears can only be
compared to Beds and we can get feedback on if the Bed is too large, too small,
or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:
Your algorithm should run in O(Nlog N) time on average. It may be helpful to

figure out the naive O(N?) solution first and then work from there.

	Sorted Runtimes
	Shuffled Exams
	Bears and Beds

